
Smart Executives for Autonomous Spacecraft

(To appear in ZEEE Intelligent Systems, October 1998)

Erann Gat
Jet Propulsion Laboratory

California Institute of Technology

Barney Pel1
Research Institute for Advanced Computer Science

NASA Ames Research Center

1. Introduction
Interplanetary spacecraft are traditionally controlled by sequences of

commands generated by a team of engineers. These sequences are uplinked to
the spacecraft, which executes them in a more-or-less linear fashion. The
commands that constitute a sequence range from very low-level commands
(e.g. "Toggle power switch 27.") to relatively high-level commands such as
"Turn the spacecraft to attitude A."

Sequence-based commanding has sucessfully met the challenge of
controlling spacecraft many hundreds of millions of miles from Earth with
extreme precision and often in the face of hardware failure. But the manual
generation of sequences is difficult, time-consuming, and expensive. This is
mainly because sequences are executed open-loop, so erroneous sequences can
cause loss of data or, in extreme cases, loss of an entire mission. Thus,
sequences must be constructed with exquisite care and painstakingly checked
and re-checked for correctness before they are uplinked to the spacecraft.
Fu r the rmore , any unexpec ted ha rdware f a i lu re s o r env i ronmen ta l
interactions during sequence execution will cause the state of the spacecraft to
diverge from its expected state. This usually causes the spacecraft to abort the
sequence and enter a safe mode, requiring additional time-consuming and
expensive human intervention.

Efforts are currently underway at the Jet Propulsion Laboratory (JPL) and
NASA Ames Research Center (ARC) to design a control .system for a new
generation of spacecraft that can operate with much less human intervention,
and execute missions in unmodelled environments such as the surfaces of
comets. These autonomous spacecraft are designed to accept very high level
commands and execute them reliably even in the face of hardware failure,
unexpected environmental interactions, and errors or inconsistencies in the
command set. To accomplish this requires radical rethinking of the entire
spacecraft command process and control architecture. For example, some
planning functions that are currently performed on the ground by humans
must now be performed automatically by the spacecraft. Data representations
and processes designed for humans in the loop must be redesigned to make
them suitable for on-board operation.

In this article we explore the design of an executive for an autonomous
spacecraft. The executive is responsible for translating high-level commands,
whether they come from the ground or from an on-board planner, into the

low-level commands understood directly by the spacecraft hardware. This
requires a paradigm shift from an open-loop sequence-based executive to a
closed-loop executive that is aware of and knows how to respond robustly to
unexpected contingencies.

To understand the operation of a closed-loop autonomous spacecraft
executive it is instructive to begin with a description of how traditional
sequence-based commands work. This will illustrate some of the complex and
subtle issues that an autonomous executive must face.

2. Spacecraft Commanding 101
To get a feel for some of the issues involved in generating and analyzing

spacecraft command sequences, consider a very simple command: turning on
the power for a device-
on a spacecraft, and so
executed in a situation
power bus to operate the
c a t a s t r o p h i c .

Overloading a power

Electrical power is a heavily oversubscribed resource
if one is not careful a power-on command can be

where there is not enough power available on the
device. The consequences of such a mistake can be

bus causes the voltage on the bus to drop below the
level at which- the *devices on the bus can operate reliably, a condition known
as a "bus undervolt." On an unmanned spacecraft, this triggers emergency
hardware interlocks that turn off the power to all but the most vital
subsystems, an event known as a "bus trip." After a bus trip, the spacecraft
goes into a mode of operation known as "safe mode" where it does nothing but
try to establish contact with Earth. Getting the spacecraft out of safe mode
requires manual intervention, which takes hours if not days. If a spacecraft
enters safe mode just before a crucial science observation the opportunity for
that observation is usually irretrivably lost. If a spacecraft enters safe mode
during a critical mission maneuver such as an orbit insertion the entire
mission can be lost. So even a simple thing like turning on a power switch is
potentially catasrophic'.

The situation is further complicated by the fact that there is usually no
way to measure the amount of power available on a spacecraft. Sequences are
designed based on predictive models of available power, which is a complicated
function of the spacecraft state, which in turn is a function of the sequence
being executed. Thus, every command in a sequence can interact with every
other command in the sequence. Making a change in one part of the sequence
can cause a catastrophic failure in a different part of the sequence. The
situation is exacerbated by the fact that spacecraft resource margins are
always very small. As a result, sequences are very brittle; the tiniest change
can have a global and potentially catastrophic impact. This is what makes
sequences so difficult and expensive to develop. (Critical sequences such as
orbit insertions, which can cause loss of mission if they enter safe mode, can
take many years to generate.)

I On the Cassini spacecraft, if certain non-critical devices fail during
Saturn orbit insertion the sequence will proceed without them despite the fact
that backups are available. Because of the possibility of a bus trip, the risk to
the mission of turning on the backup is deemed to be higher then the risk of
proceeding without the device.

Of course, a bus trip is not the only thing that can go wrong. Turning on a
device is itself a fairly complicated process that involves many intermediary
devices, any one of which can fail. A device's power terminal is typically
connected to a power distribution unit (PDU) which contains a number of
power switches that control the flow of electricity from a power bus to various
spacecraft devices. (See figure 1.) The PDU is in turn connected to a
peripheral data communications bus which is also connected to the
spacecraft 's computer through a bus controller (which controls a data
communications bus, not to be confused with the power bus). Any of these
components may be redundant, including the computer.

Backplane I

Peripheral Bus
" 1 - - - - - - 1

Power Camera

Figure 1 : A simplified block diagram of the hardware
components involved in turning on a camera.

The code that implements the sequence command, "Turn on device X,"
implements something along the lines of:

Ask the bus controller to send a message to the PDU to change the
state of the device X power switch to ON.

So an anomaly in turning on the power to a device could be caused by a
problem in the device itself, or it could result from a problem in the PDU, the
PDU's bus interface, the bus master, or the power source. It could also be
caused by some other device on the spacecraft. For example, a bus client can
fail in a way that causes it to inject noise on the bus and interfere with the
operation of other bus clients. In fact, just about anything on the spacecraft
can cause anomalous behavior anywhere else on the spacecraft. Unexpected
effects can also be caused by spacecraft position or attitude, or interactions
with external environmental phenomena like radiation.

An example of the kinds of interactions that can occur: on Cassini, firing
the main engine can leave chemical deposits on the lens of the science
camera, causing it to malfunction. To correct this problem, the camera is
equipped with a little windshield wiper to clean the lens. When this wiper is
operating, the effects of the reaction torque can be measured in the
spacecraft's overall attitude.

3. Procedural and Declarative Knowledge Representations
By the time a command like "Turn on device X" is incorporated into a

sequence a tremendous amount of knowledge has been brought to bear,
including knowledge of mission goals, the design of the spacecraft, physics,
and common sense. This knowledge is all "compiled away" in the final

sequence. There is no way to extract from a sequence the reasoning that led to
its construction, or the constraints that it was designed to obey.

For example, consider the simple sequence, "Turn on the camera, then take
a picture." We humans know that the order in which these steps are
performed is important because we know that electronic devices like cameras
need power in order to function. We apply this knowledge so effortlessly that
we are usually not even aware of it. To appreciate the situation from the point
of view of a computer, consider the following excerpt from an actual sequence
for the Galileo spacecraft, currently in orbit around Jupiter:

04284795:56:0 98-001/00:01:00.266 CMD,35A,20ZS3B,PRI,
98-001/00:01:00.266,1;

04284795:71:0 98-001/00:01:10.266 CMD,35DML,20ZS4A,PRI,
9 8 - 0 0 1 / 0 0 : 0 1 : 1 0 . 2 6 6 , 4 0 0 0 , 4 0 , 0 2 , C 0 , 4 6 , C 4 , 0 0 , 4 0 , 0 0 , 0 4 , 0 2 ,
0 4 , 0 2 , 0 4 , 0 2 , 0 4 , 0 2 , 0 4 ;

or, translated into English, "At 56 seconds, do command 35A. At 71 seconds, do
command 35DML." Unless you happen to be a member of the Galileo
sequencing team you probably have no idea what 35A and 35DML actually do,
which puts you in the same position as the spacecraft itself. The spacecraft
has no knowledge of the interactions between the 35A and 35DML commands,
so it has no basis for making any choices about their execution. The
spacecraft has no basis for determining whether, for example, the 15 second
delay between command 35A and 35DML is really necessary, if it can be longer
or shorter, if the order of these two commands could be reversed, and if either
of them puts the spacecraft at risk for a bus trip or other catastrophe. All the
information needed to make such decisions has been "compiled away" in the
process of generating the sequence, so all the spacecraft can do is blindly
follow its dictates, and call home if the slightest thing goes wrong.

If we want our spacecraft to exhibit less brittle behavior, then the
knowledge that currently gets compiled away during sequence generation
must be somehow provided to the spacecraft. One approach is to build an
explicit d e c l a r a f i v e model of the spacecraft and use various Artificial
Intell igence (AI) search and deduction tecnniques to make operational
decisions. Unfortunately, the models needed to support such an approach tend
to be very large and difficult to maintain. For example, to figure out from
declarative knowledge even as simple a thing as how much timing flexibility
exists in the above sequence the spacecraft needs to know what the 35A
command does (it turns on the magnetometer), what the 35DML command does
(it loads the magenetometer's firmware - DML stands for direct memory load),
how much power the magnetometer uses, how long it takes after the
magnetometer is turned on before it is ready to accept commands, when the
magnetometer is actually needed, how much heat the magnetometer generates,
etc. etc. Things get immensely more complicated for commands to, say, turn
the spacecraft or fire the main engine.

An alternative to generating a declarative model of the spacecraft (and
associated computational machinery) is to incrementally expand the existing
p r o c e d u r a l vocabulary of sequences to include explicit represenations of, say,
execution time flexibility. For example, consider the following command
" s e q u e n c e " :

Step 1: Do command 35A between times T1 and T2.

Step 2: Do command 35DML no less than 15 seconds after step 1.

It is not possible to give these instructions in a traditional command
sequence, where every step must be associated with a particular fixed
execution time. With a simple extension to the sequence vocabulary and the
underlying execution machinery we have 'given the spacecraft the ability to
display some flexibility in execution without the need to generate a complete
declarative model.

We can envision additional increments to the expressiveness of our
command language. For example, we might want to protect against the
possibility of a bus trip by saying, "Before executing command 35A wait until
the system power margin is at least five watts." Here we have extended the
vocabulary to to allow the system to wait for a particular condition to become
true before taking an action. This naturally leads to a host of other extensions:
timeouts, descriptions of corrective action if timeouts expire, etc.

These extensions to the sequencing vocabulary provide the ability to
express spacecraft instructions that are not nearly as brittle as traditional
sequences. Because they are backwards-compatible extensions to the
traditional sequencing paradigm, procedural representations tend to be easier
to use than their declarative counterparts, which require a more radical shift
in how one thinks about spacecraft commanding. Also, the computational
machinery needed to execute procedural representations tends to be relatively
simple and efficient.

However, purely procedural representations are limited in that they
cannot provide the spacecraft with any knowledge of what the commands it is
executing actually d o . Extending the command vocabulary provides more
power to express the r e s u l t s of deliberations about command interactions, but
we have not done anything to simplify the deliberations themselves. You have
to know just as much about the spacecraft to generate a flexible sequence as
you do to generate a brittle one.

F o r t u n a t e l y , t h e d e c l a r a t i v e a n d p r o c e d u r a l a p p r o a c h e s a r e
complementary rather than antagonistic. We have developed a system for
executing robust procedures that can serve both as a spacecraft sequencing
system, and as an integrating component for a hybrid autonomous control
a r c h i t e c t u r e t h a t c o m b i n e s p r o c e d u r a l a n d (m u l t i p l e) d e c l a r a t i v e
representations. This hybrid architecture, of which our executive is a part, is
described in the next section. The executive itself is described in more detail
in section 5.

4. Remote Agent Architecture
We have developed an architecture called Remote Agent (RA) [Bernard981

that combines declarative and procedural mechanisms for representing the
knowledge required for autonomous operation. (See figure 2.) RA consists of
four components: the "smart" executive (EXEC), a mission manager2 (MM), a

2 The mission manager and planner/scheduler are actually implemented
within a single software module called PS/MM (or MM/PS). They use the same
modelling language and computational machinery. They are distinguished
because they use different models (though the same modelling language) and
serve two distinct architectural roles.

planner/scheduler (PS) [Muscettola97], and a system called MIR (mode
identification and recovery) [Williams961 for reasoning about the finite-state
behavior of the spacecraft. RA will be be used in a flight experiment to control
the New Millennium Deep Space 1 spacecraft (DS1) for a one-week period in
1999.

I 1 I Planning Experts I
(incl. Navigation)
" I Monitors I

Figure 2: The Remote Agent architecture embedded within
flight software

RA interacts with the spacecraft through a real-time control system (RT),
which directly controls the spacecraft hardware. RT consists of a set of
control and monitoring tasks which provide the core functionality for the RA.
RT functionality ranges from relatively simple device drivers that provide
direct access to spacecraft hardware, to complex control loops for controlling
the spacecraft's attitude and trajectory. Information about the status of RT
control loops and hardware sensors is passed back to RA either directly or
through a set of moni tor s . The PS component of RA also interacts with a set of
planning experts, which are subroutines for computing answers to domain-
specific queries like how much time it will take to turn from one attitude to
a n o t h e r .

EXEC is the core of the architecture. It coordinates all the activities in both
RA and in the external software components. EXEC provides both an extended
procedural vocabulary for expressing instruct ions, and an integrated
declarative knowledge base. EXEC itself has very limited deduction capabilities,
relying instead on MM, PS and MIR to perform most of the model-based
r e a s o n i n g .

PS and MIR are both model-based, and each has its own modelling
language. The PS modelling language (which is also used for MM) has
facilities for describing the interactions of spacecraft activities evolving in
time, and allows one to describe constraints among acitivities (like turns) and
states (like hardware configurations). The language also has vocabulary for
talking about time which is used to describe how long different activites are
expected to take. PS uses this information to generate plans of action in terms
of activities bound to temporal intervals whose endpoints are not fixed in time,
but simply constrained relative to one another. The resulting plans are thus

both concurrent and flexible, that is, they describe activities that go on in
parallel, and without specifying precisely when those activities are to take
p l ace .

The MIR modelling language has facilities for describing the finite-state
behavior of the spacecraft hardware. For example, using the MIR modelling
language one can express the fact that if the power switch for a device is
closed, and enough power is available, that the corresponding device should be
on. The MIR models are used in two ways, for fault diagnosis (mode
identification or MI) and fault recovery (mode recovery or MR). Using its
models, MIR is able to deduce the most likely actual state of the spacecraft
hardware given the observable state, i.e. sensor readings, taking into account
that the sensors themselves might be faulty. MIR can also use the same models
to derive sequences of actions that will produce a desired configuration of the
hardware. These capabilities are used to provide EXEC with an abstracted view
of the spacecraft state, and a mechanism for recovering from faults.

RA is written entirely in Common Lisp. It runs both in Allegro Common
Lisp under Unix, and on the flight processor (a Rad6000 - a radiation-hardened
processor similar to a PowerPC) under a custom port of Harlequin Common Lisp
for the vxWorks real-time operating system.

5. Remote Agent Executive
The Remote Agent Executive coordinates the activities of all the other

components of the spacecraft software. EXEC consists of a core language which
provides an expressive vocabulary for procedural knowledge, and a set of
higher-level facilities built on top of this core, including flexible plan
execution, configuration management, and resource management. Each of
these facilities is described in turn in the following subsections.

5.1 ESL

The core of EXEC is a lanaguage called ESL (Execution Support Language)
[Gat961 which provides a rich representation for the sort of procedural
knowledge alluded to in section 3 above. ESL consists of about half a dozen
loosely coupled feature sets that provide facilities for handling unexpected
contingencies, achieving goals, managing and coordinating parallel tasks, and
managing resources. In addition, ESL provides a backchaining logical
database, essentially a little Prolog interpreter, which is the central
mechanism through which the procedural and declarative paradigms interact.

5.2 Flexible Plan Execution

EXEC provides a facility for executing the plans produced by PS, which are
not linear sequences of commands, but rather abstract descriptions of parallel
activities. A PS plan consists of a set of timelines. Each timeline corresponds
to a description of some aspect of the spacecraft's state at varying levels of
abstraction. For example, a timeline may describe a simple state like whether a
device is on or off, or a more complex abstract state like whether or not the
spacecraft is turning, and what its target attitude is.

Each timeline is subdivided into a set of temporal intervals over which the
timeline's state description is constant. These intervals are referred to as
t o k e n s . For example, the timeline for the power state of a device usually

consists of a sequence of tokens alternating between on and off . The timeline
for the spacecraft attitude will alternate between t u r n i n g and c o n s t a n t -
attitude tokens.

The beginning and ending times of the tokens are in general not specified
in terms of absolute time, but rather in relation to the start and end times of
other tokens. This allows an explicit representation of the dependencies
among tokens, and enables considerable robustness and flexibility. For
example, consider the example from section 3, where the magnetometer had to
be turned on fifteen seconds before loading its software. This dependency can
be represented in a PS plan by two tokens, one on the magnetometer's power
state timeline which states that the power is on, and another on the
magnetomer's activity timeline which states that the software is being loaded.
The temporal constraint is represented by a plan annotation that says that the
start of the first token must come at least fifteen seconds before the start of the
second token.

As one might imagine, executing a plan specified using this notation is
considerably more challenging than executing a simple linear sequence of
commands. But it generates behavior that is far more flexible and reliable
because the executive now has explicit information about the dependencies
between steps. In a traditional sequence, if anything went wrong while
turning on the magnetometer the entire sequence would fail because the
spacecraft would have no way to know the potential repurcussions of this
deviation from the plan. With the new representation, EXEC knows exactly
what the dependencies are. If turning on the magnetometer fails, EXEC is free
to take some corrective action as long as the software-loading activity doesn't
start for at least fifteen seconds after the power is successfully turned on, and
all the other temporal constraints specified in the plan are met.

EXEC's plan execution system (called the plan runner) is built on top of
ESL's task management facilities. Each plan timeline has a thread of execution
associated with it. Each thread issues commands to control those aspects of the
spacecraft state corresponding to its timeline. The threads use ESL's
synchronization facilities to coordinate their actions to conform to the
temporal constraints specified in the plan. The result is a system that is far
more robust than a traditional sequence-based executive.

5.3 Resource Management

Scarce resources are a fact of life on spacecraft. On-board processes
contend for a limited number of devices. Shared resources, such as energy
and data storage, are subject to hard (and relatively severe) limits, as well as
environmental influences (such as solar exposure for battery charging) that
change these limits over time.

Resource management in RA is done mainly by PS, which typically uses
worst-case estimates of resource utilization. However, the uncertainty in the
environment and its effect on the true resource utilization can make the PS
resource usage estimates inaccurate. The problem is particularly severe on
p l ane ta ry rove r s , wh ich mus t con tend w i th huge env i ronmen ta l
u n c e r t a i n t i e s .

EXEC provides a general architecture for managing resources at run-time,
providing a layer of protection against inaccurate predictions by PS, and also a
measure of safety for manually generated procedures. EXEC's resource

manager (RM) architecture consists of a managing object for each resource.
When a task wants to take an action that affects the state of a resource it
registers its intent to do so with the resource manager object. The manager
object checks all the intentions pertaining to a particular resource and finds a
mutually consistent set. Those tasks making the mutually consistent requests
are allowed to proceed; all other requests are blocked until enough tasks in the
first set release their requests to allow a new mutually consistent set to
p r o c e e d .

This general architecture is currently implemented only for discrete-state
resources like hardware configurations. The manager object for a discrete
state resource is called a p r o p e r t y lock. Property locks and the facilities for
accessing them are currently built in to ESL.

The property lock mechanism is quite powerful. It automatically manages
not only the synchronization of multiple tasks accessing a particular resource,
but also the actual achievement, maintenance and (if needed) restoration of
the physical state corresponding to that resource. However, it also lacks some
important functionality. It does not take into account process priorities. (This
is a very complicated problem; see section 6.) It does not currently perform
deadlock detection, although this could be added without difficulty. And, as
mentioned before, the property lock mechanism is limited to managing
discrete states.

5.4 Configuration Management

PS plans describe the evolution of the spacecraft state usually at a high
level of abstraction, leaving it up to EXEC to fill in the details at run time. For
example, the plan may specify that a particular capability is needed for a
particular activity, but it might not say anything at all about the actual
hardware configuration required to provide that capability. It is the
responsibility of EXEC to manage the actual configuration of the spacecraft to
make it conform to the constraints imposed by the plan. This is challenging
for several reasons. First, spacecraft are quite complicated, with many tightly
coupled interacting components. (As discussed in section 2, even as simple an
action as turning on a device can be quite complicated.) The best
configuration for a particular goal is often a function of the current
configuration. Second, the design of the spacecraft can change during the
software development process. Third, the spacecraft is expected to continue to
operate even if some of its components fail in flight.

EXEC provides a generic configuration management facility (CM) which
uses a simple model of the spacecraft hardware topology to automatically
generate the r ight sequence of commands to control the spacecraft
configuration. The model is described in terms of a class hierarchy and a
connectivity diagram. A generic library of configuration management
routines uses the model to control the hardware.

A typical model includes descriptions of all the devices, their types, and
their data and power connections. CM uses this information to respond to
requests to provide devices of a particular class. For example, if a request is
made to provide a camera, CM will go through the list of available cameras,
select one, and configure it . This typically involves considerations of
hardware states other than just the camera. For example, turning on a camera
usually involves sending a command to a power switching unit, not the
c a m e r a .

Besides configuring the hardware to provide requested functionality, CM
also coordinates configuration requests from multiple parallel tasks at run-
time using ESL's property lock mechanism. This provides an additional
measure of safety against flaws in the PS plan. (PS plans are guaranteed to be
correct with respect to the PS models, but the models can have errors with
respect to the actual situation on the spacecraft.)

CM makes hardware configuration management code much easier to write
and maintain than hand-crafted code. If the spacecraft configuration
changes, only the hardware model needs to be changed. Commanding a
particular configuration usually involves only one line of code.

For example, the following code is an excerpt from the DS1 CM model.

(define-device-class :camera
:power-function fsc-power-request
:talk-function camera-talk-msg)

(define-device :camera-A :camera
:powered-thru :powerbus-1
:switched-thru :fsc-camera-switch1
:ready-state ((:health-state :ok)

(:power-state : o n)))

Based on the above model, configuring and using a camera requires only a
tiny snippet of code:

(with-selected-device :camera
(take-pictures))

This code would select a camera, make it ready by taking actions to make it
powered on and healthy, and then take pictures. Until the picture-taking is
complete, any task that tries to change the state of the camera away from its
ready state will be prevented from running. Furthermore, if the camera
deviates from its ready state during picture taking then two things will
happen. First, the picture-taking task will be notified that the camera is no
longer ready and given an opportunity to either 1) take corrective action or 2)
wait for an automatic recovery (generated by MIR). All this complexity is
completely hidden from the programmer behind the abstractions of high-
level control constructs like WITH-SELECTED-DEVICE. More information on
how contingencies are handled can be found in [Gat97].

6. Related Work
There are many robust execution systems in the literature. The one most

closely related to EXEC is RAPs [Firby891 and the related 3T architecture
[Bonasso97]. In fact, an early version of EXEC was implemented using RAPs.
Unlike ESL, RAPs is not an extension to a general-purpose programming
language, but a unique language in its own right with its own semantics. This
made it cumbersome to combine robust execution with general-purpose
computation, which is what motivated the development of ESL. RPL
[McDermott91] is another direct decendent of RAPs whose design influenced
ESL, along with PRS [Georgeff87] and RL [Lyons93]. [Freed981 describes a RAP-
like language that was used in an interesting automated air-traffic control
a p p l i c a t i o n .

At the other end of the implemetation spectrum, TCA [Simmons901 is a
robust execution system that is implemented not as a language or a language
extension, but as a subroutine library. TCA combines a robust execution
system with an interprocess communications system, and uses message passing
to excercize control over processes. Because TCA does not provide new control
constructs, it requires quite a bit of dicipline on the part of the programmer to
hand-compile his intentions into TCA calls. A recent refinement of TCA
embeds the subroutine library within an extension of C++ called TDL
[Simmons98].

7. Summary and Future Work
Traditional spacecraft commanding requires ground operators to generate

detailed and inflexible command sequences. These sequences are difficult and
expensive to generate, and do not contain enough information to allow the
spacecraft to respond intelligently to deviations from expected behavior,
which makes them inherently brittle.

At the core of a new control architecture (the Remote Agent) designed to
make spacecraft more self-reliant and less dependent on ground intervention
is an executive (EXEC) which implements an expanded vocabulary for
commanding spacecraft. EXEC provides a wide range of capabilities at
different levels of abstraction, ranging from simple failure recovery
mechanisms, to the execution of high-level flexible plans and the ability to
command the spacecraf t d i rec t ly in t e rms of abs t rac t hardware
configurations. EXEC's design is highly modular, making it able to integrate a
wide variety of external facilities. In the RA architecture, EXEC integrates a
planner and scheduler (PS), a discrete-state reasoning system (MIR), and real-
time control software (RT).

EXEC's flexibility gives it much of its power, but i t is also a source of certain
weaknesses. Because there are few architectural requirements levied on the
modules that EXEC connects, the result can be a mishmash of different
conflicting representations. RA uses three different representation
languages. It represents redundant information in all three, which can cause
serious software configuration control problems.

EXEC's resource management capabilties are also somewhat impoverished
at the moment. It can only manage discrete-state resources, it does not take
task priority into account when making resource decisions, and it does not
have a mechanism for detecting and recovering from deadlocks. However, the
general architecture was designed to allow all these capabilities to be added
without major difficulty.

In the future we hope to develop an autonomy system that uses a more
uniform and non-redundant representation among its different components.
We also intend to remedy the three shortcomings of the resource manager
listed above. Taking task priorities into account presents a unique problem.
In general, high-priority tasks should be allowed to usurp resources from low-
priority tasks. However, this leads to very difficult problems in trying to
insure the consistency of the dynamic state of the usurped task. This is
because, in general, a task may have associated with it a number of c l e a n u p
p r o c e d u r e s that must be executed before the task can be safely aborted. But
these cleanup procedures can, in general, take arbitrarily long to execute. In

general, this problem devolves to the fu l l planning problem. The challenge
will be to find a heuristic that handles a useful subset of the general case.

Acknowledgements
This work was carried out partly at the NASA Ames Research Center and

partly at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the NASA. We gratefully acknowledge the contributions
of the EXEC team members past and present, including Gregory Dorais, Charles
Fry, Edward B. Gamble, Jr., Ron Keesing, Christian Plaunt, and Richard
W a s h i n g t o n .

References
[Agre90] Phillip Agre and David Chapman. “What are Plans For?” Robotics and

Autonomous Systems, vol. 6 , pp. 17-34, 1990.

[Bernard981 Douglas E. Bernard, Gregory A. Dorais, Chuck Fry, Edward B.
Gamble Jr., Robert Kanefsky, James Kurien, William Millar, Nicola
Muscettola, P. Pandurang Nayak, Barney Pell, Kanna Rajan, Nicolas
Rouquette, Benjamin Smith, Brian C. Williams, “Design of the Remote
Agent Experiment for Spacecraft Autonomy”, in Proc. of IEEE Aeronautics
Conference (Aero-98), Aspen, CO, IEEE Press, 1998.

[Bonasso et al. 971 R. Peter Bonasso, et al. Experiences with an Architecture
for Intelligent Reactive Agents. Journal of Experimental and Theoretical
A I , 9(2), 1997.

[Firby891 R. James Firby. Adaptive Execution in Dynamic Domains, Ph.D.
thesis, Yale University Department of Computer Science, 1989.

[Freed981 Michael Freed. “Managing Multiple Tasks in Complex Dynamic
Environments.” AAAI98.

[Gat971 Erann Gat, “ESL: A language for supporting robust plan execution in
embedded autonomous agents,” in Proc. of IEEE Aeronautics (AERO-98),
Aspen, CO, IEEE Press, 1997.

[Gat981 Erann Gat and Barney Pell, “Abstract Resource Management in an
Unconstrained Plan Execution System,” in Proc. of IEEE Aeronautics
(AERO-98), Aspen, CO, IEEE Press, 1998.

[Georgeff87] Michael Georgeff and Amy Lanskey, “Reactive Reasoning and
Planning“, Proceedings of AAAI-87.

[Lyons931 Damian Lyons. “Representing and Analyzing action plans as
networks of concurrent processes, “ IEEE Transactions on Robotics and
Au tomat ion , 9(3), June 1993.

[McDermott91] Drew McDermott. “A Reactive Plan Language,” Technical
Report 864, Yale University Department of Computer Science, 1991.

[Muscettola97] N. Muscettola, B. Smith, S. Chien, C. Fry, G. Rabideau, K. Rajan, D.
Yan, “On-board Planning for Autonomous Spacecraft,” in Proceedings of
the fourth International Symposium on Artificial Intelligence, Robotics
and Automation for Space (i-SAIRAS 97), July 1997.

[Pel1961 B. Pell, D. E. Bernard, S. A. Chien, E. Gat, N. Muscettola, P. Nayak, M. D.
Wagner, and B. C. Williams, “A Remote Agent Prototype for Spacecraft
Autonomy,” SPIE Proceedings Volume 2810, Denver, CO, 1996.

[Pel1971 Barney Pell, Erann Gat, Ron Keesing, Nicola Muscettola, and Ben Smith,
“Robust Periodic Planning and Execution for Autonomous Spacecraft,” In
Procs. of IJCAI-97, 1997.

[Pe1198a] Barney Pell, Ed Gamble, Erann Gat, Ron Keesing, Jim Kurien, Bill
Millar, P. Pandurang Nayak, Christian Plaunt, and Brian Williams, “A
hybrid procedural/deductive executive for autonomous spacecraft,” In M.
Wooldridge and K. Sycara, eds, Procs. of Second International Conference
on Autonomous Agents, AAAI Press, 1998.

[Pe1198b] Barney Pell, Scott Sawyer, Douglas E. Bernard, Nicola Muscettola, and
Ben Smith, “Mission Operations with an Autonomous Agent,” In Proc. of
IEEE Aeronautics Conference (Aero-98), Aspen, CO, IEEE Press, 1998.

[Simmons901 Reid Simmons. “An Architecture for Coordinating Planning,
Sensing and Action.“ Proceedings of the DARPA Workshop on Innovative
Approaches to Planning, Scheduling, and Control, 1990.

[Simmons981 Reid Simmons, “A Task Description Language for Robot Control.”
Unpublished manuscript .

[Williams961 B. C. Williams and P. Nayak, “A Model-based Approach to Reactive
Self-configuring Systems,” Proceedings of AAAI-96, 1996.

